Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38634869

RESUMO

We previously reported two siblings with inherited PD-1 deficiency who died from autoimmune pneumonitis at 3 and 11 years of age after developing other autoimmune manifestations, including type 1 diabetes (T1D). We report here two siblings, aged 10 and 11 years, with neonatal-onset T1D (diagnosed at the ages of 1 day and 7 wk), who are homozygous for a splice-site variant of CD274 (encoding PD-L1). This variant results in the exclusive expression of an alternative, loss-of-function PD-L1 protein isoform in overexpression experiments and in the patients' primary leukocytes. Surprisingly, cytometric immunophenotyping and single-cell RNA sequencing analysis on blood leukocytes showed largely normal development and transcriptional profiles across lymphoid and myeloid subsets in the PD-L1-deficient siblings, contrasting with the extensive dysregulation of both lymphoid and myeloid leukocyte compartments in PD-1 deficiency. Our findings suggest that PD-1 and PD-L1 are essential for preventing early-onset T1D but that, unlike PD-1 deficiency, PD-L1 deficiency does not lead to fatal autoimmunity with extensive leukocytic dysregulation.


Assuntos
Antígeno B7-H1 , Diabetes Mellitus Tipo 1 , Recém-Nascido , Humanos , Pré-Escolar , Criança , Receptor de Morte Celular Programada 1 , Autoimunidade , Homozigoto
2.
Eur J Hum Genet ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605124

RESUMO

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.

3.
Diabetologia ; 67(1): 113-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897565

RESUMO

AIMS/HYPOTHESIS: Monogenic diabetes is estimated to account for 1-6% of paediatric diabetes cases in primarily non-consanguineous populations, while the incidence and genetic spectrum in consanguineous regions are insufficiently defined. In this single-centre study we aimed to evaluate diabetes subtypes, obtain the consanguinity rate and study the genetic background of individuals with syndromic and neonatal diabetes in a population with a high rate of consanguinity. METHODS: Data collection was carried out cross-sectionally in November 2021 at the paediatric diabetic clinic, Dr Jamal Ahmad Rashed Hospital, in Sulaimani, Kurdistan, Iraq. At the time of data collection, 754 individuals with diabetes (381 boys) aged up to 16 years were registered. Relevant participant data was obtained from patient files. Consanguinity status was known in 735 (97.5%) participants. Furthermore, 12 families of children with neonatal diabetes and seven families of children with syndromic diabetes consented to genetic testing by next-generation sequencing. Prioritised variants were evaluated using the American College of Medical Genetics and Genomics guidelines and confirmed by Sanger sequencing. RESULTS: A total of 269 of 735 participants (36.5%) with known consanguinity status were offspring of consanguineous families. An overwhelming majority of participants (714/754, 94.7%) had clinically defined type 1 diabetes (35% of them were born to consanguineous parents), whereas only eight (1.1%) had type 2 diabetes (38% consanguineous). Fourteen (1.9%) had neonatal diabetes (50% consanguineous), seven (0.9%) had syndromic diabetes (100% consanguineous) and 11 (1.5%) had clinically defined MODY (18% consanguineous). We found that consanguinity was significantly associated with syndromic diabetes (p=0.0023) but not with any other diabetes subtype. The genetic cause was elucidated in ten of 12 participants with neonatal diabetes who consented to genetic testing (homozygous variants in GLIS3 [sibling pair], PTF1A and ZNF808 and heterozygous variants in ABCC8 and INS) and four of seven participants with syndromic diabetes (homozygous variants in INSR, SLC29A3 and WFS1 [sibling pair]). In addition, a participant referred as syndromic diabetes was diagnosed with mucolipidosis gamma and probably has type 2 diabetes. CONCLUSIONS/INTERPRETATION: This unique single-centre study confirms that, even in a highly consanguineous population, clinically defined type 1 diabetes is the prevailing paediatric diabetes subtype. Furthermore, a pathogenic cause of monogenic diabetes was identified in 83% of tested participants with neonatal diabetes and 57% of participants with syndromic diabetes, with most variants being homozygous. Causative genes in our consanguineous participants were markedly different from genes reported from non-consanguineous populations and also from those reported in other consanguineous populations. To correctly diagnose syndromic diabetes in consanguineous populations, it may be necessary to re-evaluate diagnostic criteria and include additional phenotypic features such as short stature and hepatosplenomegaly.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Doenças do Recém-Nascido , Masculino , Recém-Nascido , Humanos , Criança , Idoso , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Consanguinidade , Estudos de Coortes , Iraque/epidemiologia , Doenças do Recém-Nascido/genética , Mutação/genética , Proteínas de Transporte de Nucleosídeos/genética
4.
Nat Genet ; 55(12): 2075-2081, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973953

RESUMO

Identifying genes linked to extreme phenotypes in humans has the potential to highlight biological processes not shared with all other mammals. Here, we report the identification of homozygous loss-of-function variants in the primate-specific gene ZNF808 as a cause of pancreatic agenesis. ZNF808 is a member of the KRAB zinc finger protein family, a large and rapidly evolving group of epigenetic silencers which target transposable elements. We show that loss of ZNF808 in vitro results in aberrant activation of regulatory potential contained in the primate-specific transposable elements it represses during early pancreas development. This leads to inappropriate specification of cell fate with induction of genes associated with liver identity. Our results highlight the essential role of ZNF808 in pancreatic development in humans and the contribution of primate-specific regions of the human genome to congenital developmental disease.


Assuntos
Anormalidades Congênitas , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA , Pâncreas , Animais , Humanos , Diferenciação Celular , Genoma Humano , Primatas/anormalidades , Primatas/genética , Proteínas de Ligação a DNA/genética , Anormalidades Congênitas/genética , Pâncreas/anormalidades
5.
Diabetes ; 72(11): 1729-1734, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639628

RESUMO

ONECUT1 (also known as HNF6) is a transcription factor involved in pancreatic development and ß-cell function. Recently, biallelic variants in ONECUT1 were reported as a cause of neonatal diabetes mellitus (NDM) in two subjects, and missense monoallelic variants were associated with type 2 diabetes and possibly maturity-onset diabetes of the young (MODY). Here we examine the role of ONECUT1 variants in NDM, MODY, and type 2 diabetes in large international cohorts of subjects with monogenic diabetes and >400,000 subjects from UK Biobank. We identified a biallelic frameshift ONECUT1 variant as the cause of NDM in one individual. However, we found no enrichment of missense or null ONECUT1 variants among 484 individuals clinically suspected of MODY, in whom all known genes had been excluded. Finally, using a rare variant burden test in the UK Biobank European cohort, we identified a significant association between heterozygous ONECUT1 null variants and type 2 diabetes (P = 0.006) but did not find an association between missense variants and type 2 diabetes. Our results confirm biallelic ONECUT1 variants as a cause of NDM and highlight monoallelic null variants as a risk factor for type 2 diabetes. These findings confirm the critical role of ONECUT1 in human ß-cell function.

6.
Brain ; 146(11): 4547-4561, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37459438

RESUMO

SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.


Assuntos
Convulsões , Simportadores de Sódio-Bicarbonato , Criança , Camundongos , Humanos , Animais , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Convulsões/genética , Mutação/genética , Neurotransmissores , Ácido gama-Aminobutírico/genética , Mamíferos/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo
7.
EMBO Mol Med ; 15(3): e16491, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36704923

RESUMO

Dysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain-containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICDR371S mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICDR371S or knock-in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de-regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.


Assuntos
Diabetes Mellitus , Chaperona BiP do Retículo Endoplasmático , Animais , Cricetinae , Humanos , Lactente , Processamento de Proteína Pós-Traducional , Cricetulus , Monofosfato de Adenosina
8.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333503

RESUMO

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Assuntos
Hiperinsulinismo Congênito , Células Secretoras de Insulina , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
9.
Am J Hum Genet ; 109(11): 2068-2079, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36283405

RESUMO

Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Lisencefalia , Malformações do Sistema Nervoso , Humanos , Animais , Camundongos , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenótipo , Malformações do Sistema Nervoso/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
10.
Clin Genet ; 102(5): 457-458, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35856135

RESUMO

We report a second patient with intrauterine growth retardation, congenital polycystic kidney disease, infancy-onset diabetes, microcephaly, and liver fibrosis caused by a homozygous PDIA6 loss-of-function variant. Our study further defines the genetic and clinical features of this rare syndromic form of infancy-onset diabetes.


Assuntos
Diabetes Mellitus , Microcefalia , Doenças Renais Policísticas , Diabetes Mellitus/genética , Feminino , Retardo do Crescimento Fetal/genética , Homozigoto , Humanos , Microcefalia/genética , Doenças Renais Policísticas/genética , Isomerases de Dissulfetos de Proteínas/genética
11.
PLoS Comput Biol ; 18(3): e1009940, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294448

RESUMO

Identifying copy number variants (CNVs) can provide diagnoses to patients and provide important biological insights into human health and disease. Current exome and targeted sequencing approaches cannot detect clinically and biologically-relevant CNVs outside their target area. We present SavvyCNV, a tool which uses off-target read data from exome and targeted sequencing data to call germline CNVs genome-wide. Up to 70% of sequencing reads from exome and targeted sequencing fall outside the targeted regions. We have developed a new tool, SavvyCNV, to exploit this 'free data' to call CNVs across the genome. We benchmarked SavvyCNV against five state-of-the-art CNV callers using truth sets generated from genome sequencing data and Multiplex Ligation-dependent Probe Amplification assays. SavvyCNV called CNVs with high precision and recall, outperforming the five other tools at calling CNVs genome-wide, using off-target or on-target reads from targeted panel and exome sequencing. We then applied SavvyCNV to clinical samples sequenced using a targeted panel and were able to call previously undetected clinically-relevant CNVs, highlighting the utility of this tool within the diagnostic setting. SavvyCNV outperforms existing tools for calling CNVs from off-target reads. It can call CNVs genome-wide from targeted panel and exome data, increasing the utility and diagnostic yield of these tests. SavvyCNV is freely available at https://github.com/rdemolgen/SavvySuite.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Variações do Número de Cópias de DNA/genética , Exoma/genética , Humanos , Reação em Cadeia da Polimerase Multiplex , Sequenciamento do Exoma
12.
Diabetes ; 71(5): 1128-1136, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108381

RESUMO

Maturity-onset diabetes of the young (MODY) is an autosomal dominant form of monogenic diabetes, reported to be caused by variants in 16 genes. Concern has been raised about whether variants in BLK (MODY11), KLF11 (MODY7), and PAX4 (MODY9) cause MODY. We examined variant-level genetic evidence (cosegregation with diabetes and frequency in population) for published putative pathogenic variants in these genes and used burden testing to test gene-level evidence in a MODY cohort (n = 1,227) compared with a control population (UK Biobank [n = 185,898]). For comparison we analyzed well-established causes of MODY, HNF1A, and HNF4A. The published variants in BLK, KLF11, and PAX4 showed poor cosegregation with diabetes (combined logarithm of the odds [LOD] scores ≤1.2), compared with HNF1A and HNF4A (LOD scores >9), and are all too common to cause MODY (minor allele frequency >4.95 × 10-5). Ultra-rare missense and protein-truncating variants (PTV) were not enriched in a MODY cohort compared with the UK Biobank population (PTV P > 0.05, missense P > 0.1 for all three genes) while HNF1A and HNF4A were enriched (P < 10-6). Findings of sensitivity analyses with different population cohorts supported our results. Variant and gene-level genetic evidence does not support BLK, KLF11, or PAX4 as a cause of MODY. They should not be included in MODY diagnostic genetic testing.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Reguladoras de Apoptose/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Técnicas e Procedimentos Diagnósticos , Frequência do Gene , Fator 1-alfa Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Virulência , Quinases da Família src
13.
Brain ; 144(12): 3597-3610, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415310

RESUMO

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Atresia Intestinal/genética , Antígenos de Histocompatibilidade Menor/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Doenças da Imunodeficiência Primária/genética , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
14.
J Clin Invest ; 130(12): 6338-6353, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164986

RESUMO

Neonatal diabetes is caused by single gene mutations reducing pancreatic ß cell number or impairing ß cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in ß cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human ß cell models (YIPF5 silencing in EndoC-ßH1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects ß cells. Loss of YIPF5 function in stem cell-derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and ß cell failure. Partial YIPF5 silencing in EndoC-ßH1 cells and a patient mutation in stem cells increased the ß cell sensitivity to ER stress-induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in ß cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.


Assuntos
Diabetes Mellitus , Estresse do Retículo Endoplasmático/genética , Doenças Genéticas Inatas , Doenças do Recém-Nascido , Microcefalia , Mutação , Proteínas de Transporte Vesicular , Linhagem Celular , Diabetes Mellitus/embriologia , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Feminino , Doenças Genéticas Inatas/embriologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Recém-Nascido , Doenças do Recém-Nascido/embriologia , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Microcefalia/embriologia , Microcefalia/genética , Microcefalia/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Diabetes ; 69(3): 477-483, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882561

RESUMO

Permanent neonatal diabetes mellitus (PNDM) is caused by reduced ß-cell number or impaired ß-cell function. Understanding of the genetic basis of this disorder highlights fundamental ß-cell mechanisms. We performed trio genome sequencing for 44 patients with PNDM and their unaffected parents to identify causative de novo variants. Replication studies were performed in 188 patients diagnosed with diabetes before 2 years of age without a genetic diagnosis. EIF2B1 (encoding the eIF2B complex α subunit) was the only gene with novel de novo variants (all missense) in at least three patients. Replication studies identified two further patients with de novo EIF2B1 variants. In addition to having diabetes, four of five patients had hepatitis-like episodes in childhood. The EIF2B1 de novo mutations were found to map to the same protein surface. We propose that these variants render the eIF2B complex insensitive to eIF2 phosphorylation, which occurs under stress conditions and triggers expression of stress response genes. Failure of eIF2B to sense eIF2 phosphorylation likely leads to unregulated unfolded protein response and cell death. Our results establish de novo EIF2B1 mutations as a novel cause of permanent diabetes and liver dysfunction. These findings confirm the importance of cell stress regulation for ß-cells and highlight EIF2B1's fundamental role within this pathway.


Assuntos
Diabetes Mellitus/genética , Fator de Iniciação 2B em Eucariotos/genética , Hepatopatias/genética , Adolescente , Pré-Escolar , Simulação por Computador , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Recidiva , Análise de Sequência de DNA , Estresse Fisiológico
16.
Diabetes ; 68(7): 1528-1535, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30962220

RESUMO

Identifying new causes of permanent neonatal diabetes (PNDM) (diagnosis <6 months) provides important insights into ß-cell biology. Patients with Down syndrome (DS) resulting from trisomy 21 are four times more likely to have childhood diabetes with an intermediate HLA association. It is not known whether DS can cause PNDM. We found that trisomy 21 was seven times more likely in our PNDM cohort than in the population (13 of 1,522 = 85 of 10,000 observed vs. 12.6 of 10,000 expected) and none of the 13 DS-PNDM patients had a mutation in the known PNDM genes that explained 82.9% of non-DS PNDM. Islet autoantibodies were present in 4 of 9 DS-PNDM patients, but DS-PNDM was not associated with polygenic susceptibility to type 1 diabetes (T1D). We conclude that trisomy 21 is a cause of autoimmune PNDM that is not HLA associated. We propose that autoimmune diabetes in DS is heterogeneous and includes coincidental T1D that is HLA associated and diabetes caused by trisomy 21 that is not HLA associated.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/genética , Síndrome de Down/complicações , Síndrome de Down/genética , Diabetes Mellitus Tipo 1/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética
17.
Wellcome Open Res ; 4: 149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32832699

RESUMO

Background: Large contiguous gene deletions at the distal end of the short arm of chromosome 9 result in the complex multi-organ condition chromosome 9p deletion syndrome.  A range of clinical features can result from these deletions with the most common being facial dysmorphisms and neurological impairment. Congenital hyperinsulinism is a rarely reported feature of the syndrome with the genetic mechanism for the dysregulated insulin secretion being unknown.  Methods: We studied the clinical and genetic characteristics of 12 individuals with chromosome 9p deletions who had a history of neonatal hypoglycaemia. Using off-target reads generated from targeted next-generation sequencing of the genes known to cause hyperinsulinaemic hypoglycaemia (n=9), or microarray analysis (n=3), we mapped the minimal shared deleted region on chromosome 9 in this cohort. Targeted sequencing was performed in three patients to search for a recessive mutation unmasked by the deletion. Results: In 10/12 patients with hypoglycaemia, hyperinsulinism was confirmed biochemically. A range of extra-pancreatic features were also reported in these patients consistent with the diagnosis of the Chromosome 9p deletion syndrome. The minimal deleted region was mapped to 7.2 Mb, encompassing 38 protein-coding genes. In silico analysis of these genes highlighted SMARCA2 and RFX3 as potential candidates for the hypoglycaemia. Targeted sequencing performed on three of the patients did not identify a second disease-causing variant within the minimal deleted region. Conclusions: This study identifies 9p deletions as an important cause of hyperinsulinaemic hypoglycaemia and increases the number of cases reported with 9p deletions and hypoglycaemia to 15 making this a more common feature of the syndrome than previously appreciated.  Whilst the precise genetic mechanism of the dysregulated insulin secretion could not be determined in these patients, mapping the deletion breakpoints highlighted potential candidate genes for hypoglycaemia within the deleted region.

18.
Wellcome Open Res ; 4: 145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31976378

RESUMO

Multiple Nucleotide Variants (MNVs) are miscalled by the most widely utilised next generation sequencing analysis (NGS) pipelines, presenting the potential for missing diagnoses that would previously have been made by standard Sanger (dideoxy) sequencing. These variants, which should be treated as a single insertion-deletion mutation event, are commonly called as separate single nucleotide variants. This can result in misannotation, incorrect amino acid predictions and potentially false positive and false negative diagnostic results. This risk will be increased as confirmatory Sanger sequencing of Single Nucleotide variants (SNVs) ceases to be standard practice. Using simulated data and re-analysis of sequencing data from a diagnostic targeted gene panel, we demonstrate that the widely adopted pipeline, GATK best practices, results in miscalling of MNVs and that alternative tools can call these variants correctly. The adoption of calling methods that annotate MNVs correctly would present a solution for individual laboratories, however GATK best practices are the basis for important public resources such as the gnomAD database. We suggest integrating a solution into these guidelines would be the optimal approach.

19.
Clin Endocrinol (Oxf) ; 89(5): 621-627, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30238501

RESUMO

OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing. DESIGN: We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause. PATIENTS: We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing. MEASUREMENTS: Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature. RESULTS: We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort. CONCLUSIONS: Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.


Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Face/anormalidades , Feminino , Testes Genéticos , Doenças Hematológicas/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...